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Most rational asymptotic studies of non-rotating Rayleigh–Bénard convection and its
cousins have been restricted to the linear or weakly nonlinear regime. An important
exception occurs for large Rayleigh-number thermal convection at effectively infinite
Prandtl number, i.e. fast but very viscous convection. In this scenario, the temperature
field exhibits a layer-like structure surrounding an isothermal core and, crucially,
the momentum equation linearizes. These features have been exploited by several
authors to obtain semi-analytical nonlinear solutions. At O(1) Prandtl number,
the fluid dynamics in the vortex core is dominated by nonlinear inertial rather
than linear viscous effects, substantially altering the vortex structure. Here, it is
shown that a combination of matched asymptotic analysis and global conservation
constraints can be used to obtain a semi-analytic yet strongly nonlinear description
of two related flows: (i) Rayleigh–Bénard convection between constant heat-flux
boundaries at unit Prandtl number, and (ii) Langmuir circulation (LC), a wind and
wave-driven convective flow commonly observed in natural water bodies. A simple
analytical prediction is given for the roll-vortex amplitude, which is shown to be
independent of the horizontal wavenumber of the convection pattern. In marked
contrast to weakly nonlinear convection cells, the fully nonlinear asymptotic solutions
exhibit flow features relevant to turbulent convection including the complete vertical
redistribution of the basic-state temperature (or, for LC, downwind velocity) field.
Comparisons with well-resolved pseudospectral numerical simulations of the full
two-dimensional governing equations confirm the accuracy of the asymptotic results.

1. Introduction
Coherent structures are responsible for much of the turbulent transport of heat,

mass and momentum in configurations ranging from Rayleigh–Bénard convection
to wall-bounded shear flows. Thus, there is significant interest in predicting the form
and dynamics of these flow structures from the governing conservation equations.
Waleffe (2001) has coined the phrase ‘exact coherent structures’ to describe laminar
but fully nonlinear exact solutions of the Navier–Stokes equations that exhibit
striking similarities with coherent vortical structures observed in wall-bounded
turbulent shear flows. Since these solutions are not connected to a primary shear-flow
instability, Waleffe and others (Nagata 1990; Faisst & Eckhardt 2003; Kerswell,
Tutty & Drazin 2004; Wedin & Kerswell 2004) have devised sophisticated strategies
based on homotopy methods to obtain them numerically. Laboratory and numerical
experiments strongly suggest that, although unstable, these exact solutions may exert
a profound influence on the turbulent dynamics (Faisst & Eckhardt 2004).
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In other flows including Rayleigh–Bénard convection and its cousins, remnants of
a primary instability mode are evident in the turbulent state. To elucidate the modal
structure at high Rayleigh numbers, however, recourse again must be had to numerical
continuation methods (see e.g. Mamun & Tuckerman 1995); the majority of analytical
studies of convection has been limited to the linear or weakly nonlinear regime. In this
regime, the instability modes (often roll vortices) are sufficiently weak that they do
not completely restructure the vertical distribution of the horizontally averaged base
state, e.g. the mean temperature field. Exceptions occur for rapidly rotating thermal
and magnetothermal convection (Bassom & Zhang 1994; Julien & Knobloch 1997;
Matthews 1999), circumstances in which the primary instability is to narrow convec-
tion cells characterized by a large horizontal wavenumber k when scaled by the inverse
depth of the convection zone. Because this length-scale disparity persists into the fully
nonlinear regime, where the roll vortices induce an O(1) modification of the mean tem-
perature field, asymptotic methods can be used to obtain a nonlinear eigenvalue prob-
lem for the amplitude and vertical structure of the dominant mode. For non-rotating
convection with fixed heat-flux boundary conditions, the primary instability is to flat
convection cells with small k. In this circumstance, too, an asymptotic theory of nonlin-
ear convection can be developed in which O(1) temperature fluctuations are permitted
(Chapman & Proctor 1980). However, the cellular flow field is weak, having O(k)
horizontal and O(k2) vertical velocities, and there is an amplitude/forcing restriction
on these long-wavelength asymptotic solutions (see e.g. Cox & Leibovich 1993, 1994,
1997). Furthermore, the O(1) temperature perturbation is depth-independent, implying
that the basic-state vertical temperature gradient is not modified at leading order.

These analytical devices are not applicable to classical Rayleigh–Bénard convection,
nor to Langmuir circulation – a wind- and surface-wave-driven convective flow com-
monly observed in natural water bodies (Thorpe 2004). Although Blennerhassett &
Bassom (1991), for example, obtain fully nonlinear convection solutions by assuming
that k is large, their solutions do not appear to be physically relevant; under strongly
supercritical conditions, the dominant cellular mode has an O(1) wavelength (again,
when non-dimensionalized by the depth of the convection zone). Analytical progress
may still be made, however, by exploiting the weak-diffusion limit. The central idea
is not new: in this limit, the vorticity in steady two-dimensional flows with closed
streamlines becomes uniform, except in narrow boundary or shear layers, in accord
with the Prandtl–Batchelor (PB) theorem (Batchelor 1956; Wood 1957). The value
of the constant vorticity can be determined only by accounting for diffusive effects.
Generally, this requires the construction of asymptotic solutions in the viscous layers,
which must then be matched with the inviscid solution in the vortex core. The resulting
PB analysis has been usefully applied to a range of high-Reynolds-number cellular
flows governed by the steady two-dimensional Navier–Stokes equations, including cyl-
indrical eddies (Kim 1998), perturbed symmetric eddies (Kim & Childress 2001), and
multipolar planar vortices with nonlinear critical layers (Caillol & Grimshaw 2004)
and related shear flows in which instabilities give rise to closed (e.g. Kelvin ‘cat’s-eye’)
streamline patterns (Maslowe 1986).

Even at finite or zero Reynolds number, when the PB theorem does not hold and
the vorticity distribution is non-uniform, steady cellular flows will largely homogenize
passive scalar fields in the weak scalar-diffusion limit. Physically, the scalar field
is wrapped into a spiral pattern on an advective time scale; the resulting small-
scale variability in the scalar field is then smoothed along streamlines over a time
period that is short compared to the diffusion time scale. Childress & Gilbert (1995)
provide a succinct review of this shear-enhanced diffusive process, which culminates in
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cross-streamline diffusion of the scalar on the full diffusive time scale and, ultimately,
homogenization of the scalar field within the cell. Since scalar gradients are displaced
to the edge of the region of closed streamlines, the process is often referred to as
‘flux expulsion’. Rhines & Young (1983) carry out a particularly insightful analysis of
the final adjustment stages associated with this phenomenon. Once again, boundary-
layer analysis of the periphery of the cellular flow is required to obtain a complete
description of the scalar distribution, as is necessary, e.g. to determine the (enhanced)
scalar flux through the cell. These ideas have been exploited by numerous investigators
in a variety of contexts. Lingevitch & Bernoff (1994) analysed the advection of a
passive scalar by an isolated vortex couple using a WKB averaging approach to
capture the initial homogenization along streamlines and the slower diffusion across
them; boundary-layer analysis was employed to determine the scalar flux from the
couple into the surrounding flow. In earlier studies of dynamos, Childress (1979),
Soward (1987) and Perkins & Zweibel (1987) carried out similar boundary-layer
analyses, while Shraiman (1987) used related techniques to quantify the order-of-
magnitude enhancement in the diffusive transport of a passive impurity by a periodic
array of steady two-dimensional convection cells. The present investigation employs a
similar matched asymptotic approach, but extends these (and other – see below) earlier
analyses by determining rather than prescribing the cellular flow and by treating an
active rather than a passive scalar field.

In the case of Rayleigh–Bénard convection at finite or low Prandtl number and
large Rayleigh number, many authors have suggested scalings for the various flow
sub-domains (see e.g. Moore & Weiss 1973), but, evidently, none has succeeded in
constructing a rational asymptotic solution. Busse & Clever (1981), for example,
developed a model of two-dimensional convection valid in the limit of small Prandtl
number, but they assumed rather than solved for the rotational core motion.
Several authors (Roberts 1979; Olson & Corcos 1980; Jimenez & Zufiria 1987)
have made more analytical progress in the case of infinite-Prandtl-number Rayleigh–
Bénard convection, in which, crucially, the momentum equation linearizes. Although
the cellular flow is viscous and, hence, the vorticity in the core non-uniform, the
temperature field in the large-Rayleigh-number limit is composed of an isothermal
core surrounded by thin thermal boundary layers and plumes. Jimenez & Zufiria
(1987), in particular, carried out a careful boundary-layer analysis of this problem,
resolving singularities that appear near the corners of the cell. They obtained a
semi-analytic solution for the flow fields and computed an asymptotic relationship
between the scaled Nusselt number and the wavelength of the convection pattern. In
the Langmuir circulation context, Li & Garrett (1993) proposed asymptotic scalings
in the weak-diffusion–strong-forcing limit based on their fully nonlinear numerical
simulations, but they did not attempt to construct an asymptotic solution.

Here, we study the weak-diffusion limit of the Craik–Leibovich (CL) equations
(Craik & Leibovich 1976; Craik 1977; Leibovich 1977), the broadly accepted
theoretical model of Langmuir circulation. The CL equations are a surface-wave
filtered version of the Navier–Stokes equations in which the rectified effects of the
waves appear in a vortex force term. This force is given by the cross-product of
the Stokes drift, i.e. the Lagrangian mass drift associated with the filtered surface
waves, and the averaged Eulerian vorticity vector. In the small ‘laminar Langmuir
number’ (La) limit of interest, vorticity production by the CL vortex force dominates
small-scale diffusion. In fact, McWilliams, Sullivan & Moeng (1997) have argued
that their ‘turbulent Langmuir number’ is a more appropriate system parameter,
since oceanographic estimates suggest that La is typically much less than unity. By
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exploiting the limit La → 0, we are able to elucidate the asymptotic structure of
steady, strongly forced Langmuir circulation (LC) and to obtain a strikingly simple
prediction for the value Ω̄ of the (constant) vorticity in the inviscid vortex core, which
is shown to be independent of the LC wavenumber k.

When the flow is downwind-invariant (i.e. two-dimensional) and the vertical Stokes-
drift gradient is constant, as assumed here, there is a strict mathematical analogy
between Langmuir circulation and two-dimensional Rayleigh–Bénard convection
(RBC) at unit Prandtl number. The LC downwind velocity component corresponds
to the total temperature field in RBC; the physical boundary conditions assumed here
for LC correspond to fixed heat-flux thermal convection between stress-free horizontal
boundaries. Thus, our results are equally applicable to RBC under these conditions.
We borrow certain ideas from the work of Jimenez & Zufiria (1987), but emphasize
that the effective Prandtl number in our problem is unity; hence, we treat a completely
nonlinear system of equations. At O(1) rather than infinite Prandtl number, the fluid
dynamics in the vortex core is dominated by nonlinear inertial rather than linear
viscous effects, substantially altering the vortex structure.

At sufficiently small La, the steady solutions we investigate are undoubtedly
unstable; indeed, Langmuir circulation is properly viewed as part of the near-surface
ocean turbulence. In part, our purpose is similar in spirit to that of Waleffe (2001),
except that we seek ‘asymptotic’ rather than exact coherent structures. Kawahara &
Kida (2001), like Waleffe, have also numerically computed unstable (time-periodic
rather than steady) solutions in a wall-bounded shear flow. These authors demonstrate
that the mean velocity profile and root-mean-square velocity fluctuations in low-
Reynolds-number Couette turbulence can be predicted well with their unstable
solutions. Beyond a similar potential merit of our analysis, however, our investigation
addresses a fundamental question that we deem to be of intrinsic theoretical interest.
Accordingly, our primary aim is to construct a semi-analytic solution describing
strongly nonlinear convection in the weak diffusion limit.

The organization of the paper is as follows. In § 2, we state the equations and
boundary conditions governing steady two-dimensional LC and the equivalent system
for RBC. High-resolution pseudospectral numerical solutions are briefly described in
§ 3; the structure of these solutions motivates the scalar homogenization analysis given
in § 4 and the matched asymptotic analysis carried out in § 5. Using the asymptotic
scalings developed in the preceding sections, a combination of global momentum and
energy constraints is used in § 6 to determine the constant core vorticity (Ω̄) – this
constant is one of the central unknowns in the analysis, as it governs the strength
of the cellular flow. With Ω̄ determined, a ‘Childress-like’ cell problem (Childress
1979) for the LC downwind velocity component (or, for RBC, the temperature) is
formulated and solved analytically in § 7. In § 8, an efficient numerical scheme for
generating the steady strongly nonlinear convective states is developed by exploiting
semi-analytical knowledge of the solution structure; these semi-analytical solutions
are shown to agree closely with full numerical solutions. We conclude in § 9 by
summarizing our results and outlining several related open problems.

2. Problem formulation
2.1. Langmuir circulation

We look for steady two-dimensional nonlinear solutions of the CL equations. In
streamfunction–vorticity form, these equations can be expressed as

∂ψ

∂z

∂vx

∂y
− ∂ψ

∂y

∂vx

∂z
= La

[
∂2vx

∂y2
+

∂2vx

∂z2

]
, (2.1)
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∂ψ

∂z

∂Ω

∂y
− ∂ψ

∂y

∂Ω

∂z
= −dUs

dz

∂vx

∂y
+ La

[
∂2Ω

∂y2
+

∂2Ω

∂z2

]
, (2.2)

∂2ψ

∂y2
+

∂2ψ

∂z2
= −Ω, (2.3)

where x is the downwind direction, y is the cross-wind coordinate and z is directed
vertically upward with z = 0 coincident with the mean position of the air–sea interface.
All flow-fields are assumed to be steady and x-invariant: vx(y, z) is the total downwind
current; v(y, z) ≡ ∂ψ(y, z)/∂z and w(y, z) ≡ −∂ψ(y, z)/∂y are the horizontal and
vertical cross-wind velocity components, respectively; and Ω ≡ ∂w/∂y − ∂v/∂z is the
x-component of the vorticity. The total downwind velocity field is comprised of a
basic-state shear flow Ub(z) ≡ z+1, which carries the applied wind stress, and a finite-
amplitude perturbation u(y, z) to that base flow, i.e. vx(y, z) ≡ Ub(z) + u(y, z). The
non-dimensional Stokes-drift velocity gradient dUs/dz ≡ 1. Although an exponentially
decaying Stokes drift profile is more appropriate for LC in the open ocean, we employ
a linear profile because (i) the required matched asymptotic analysis is simpler in this
case, for reasons discussed in the next section, and (ii) the two-dimensional CL
equations are then formally identical to the two-dimensional Oberbeck–Boussinesq
equations governing RBC, as discussed in § 2.2.

In (2.1)–(2.3), y and z have been scaled by the depth H of the convective zone; vx ,
u and Ub each have been scaled by u∗R∗, where u∗ is the water friction velocity (with
u2

∗ equal to the magnitude of the wind stress divided by the water density), R∗ ≡
u∗H/νe is a friction Reynolds number and νe is an assumed constant eddy viscosity
(Leibovich 1977, 1980); and v and w have been scaled by [u∗R∗us0

]1/2, where us0
is the

(dimensional) Stokes-drift velocity scale, here defined to equal the product of H

and the dimensional surface value of the Stokes-drift gradient. One non-dimensional
parameter appears in (2.1)–(2.3): the laminar Langmuir number,

La ≡ νe

[u∗R∗us0
]1/2H

=

[
1

R3
∗S

]1/2

, (2.4)

where S ≡ us0
/u∗ is the non-dimensional Stokes-drift velocity scale.

The eddy viscosity appearing in La arises from the wave-filtering procedure used
in the derivation of the CL equations. Estimates nevertheless suggest that La � 1 in
wind-forced seas (Li & Garrett 1993; McWilliams et al. 1997), with a typical value
being in the range O(10−3)–O(10−4). Here, we formally exploit the asymptotic limit
La → 0 to obtain a semi-analytic characterization of strongly nonlinear Langmuir
circulation; this approach should provide an important complement to the more
common weakly nonlinear descriptions of convection.

Boundary conditions are imposed at the mean position of the air–sea interface
z = 0 and at the base of the convective region z = −1. Following Leibovich (1983),
we assume the perturbation stresses vanish at these planes. In addition, the numerical
solutions described in § 3 impose horizontal periodicity; when these solutions reach a
steady state, they exhibit reflection symmetry. Thus, we impose the following boundary
and symmetry conditions in our analysis:

z = 0, −1 :
∂u

∂z
= 0

(
i.e.

∂vx

∂z
=1

)
, ψ = 0, Ω = 0, (2.5)

y = 0, π/k :
∂u

∂y
= 0

(
i.e.

∂vx

∂y
= 0

)
, ψ =0, Ω =0, (2.6)
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where π/k is the horizontal width of a single steady Langmuir cell. Note that the
wavenumber k is a specified input to this analysis; above the primary instability
threshold, cellular modes with wavenumbers within a continuous band are possible.
Our analysis does not predict a preferred wavelength, although incorporation of
large-scale modulation of these nonlinear modes may provide a wavenumber selection
mechanism (see e.g. Newell, Passot & Souli 1990). Moreover, the analysis of Cox &
Leibovich (1993) indicates that the critical wavenumber kc of the primary (linear)
instability mode is zero for the given zero perturbation-stress boundary conditions,
a prediction that is not remedied by weak nonlinearity. Nevertheless, for La−1

sufficiently greater than La−1
c , the fastest-growing mode has an O(1) wavenumber.

Indeed, under strongly supercritical forcing conditions characteristic of typical wind-
forced seas, our simulations in a periodic y-domain invariably reach a saturated state
in which the Langmuir circulation has a finite, not infinite, wavelength: in sufficiently
wide computational domains, more than two cells are observed in the final steady
state. Similar issues arise in other convection problems, e.g. binary fluid convection,
where steady convection sets in at kc = 0 but numerically computed nonlinear states
have finite k even relatively close to onset.

2.2. Rayleigh–Bénard convection

As mentioned above, when the Stokes-drift gradient is constant, there is a strict
mathematical analogy between the downwind invariant CL equations and the two-
dimensional Oberbeck–Boussinesq equations governing RBC at unit Prandtl number.
We exploit this analogy by setting dUs/dz = 1 in (2.2), for then (2.1)–(2.3) can be
recast as

∂ψ

∂z

∂T

∂y
− ∂ψ

∂y

∂T

∂z
= R̂−1/2

[
∂2T

∂y2
+

∂2T

∂z2

]
, (2.7)

∂ψ

∂z

∂Ω

∂y
− ∂ψ

∂y

∂Ω

∂z
=

∂T

∂y
+ R̂−1/2

[
∂2Ω

∂y2
+

∂2Ω

∂z2

]
, (2.8)

∂2ψ

∂y2
+

∂2ψ

∂z2
= −Ω, (2.9)

upon identifying the LC downwind velocity component vx(y, z) with the negative
of the temperature anomaly, T (y, z), in RBC. (The definitions of Ω(y, z) and
ψ(y, z) are unchanged.) In the RBC context, (2.5) corresponds to specified heat-
flux conditions along planar stress-free boundaries. For constant heat-flux RBC, the
‘effective’ Rayleigh number R̂ ≡ αgβH 4/(νκ), where α, g, ν, κ and β are the thermal
expansion coefficient, the acceleration due to gravity, the molecular viscosity, the
molecular thermal diffusivity and the temperature gradient imposed at the upper (or
lower) boundary, respectively. To complete the analogy, we require R̂ = La−2 in (2.7)
and (2.8). Thus, a Langmuir number of 10−4, the smallest La for which we carried out
full numerical simulations (see § 3), corresponds to R̂ = 108 – again, at unit Prandtl
number. (Otero et al. (2002) demonstrate that the conventional Rayleigh number Ra,
defined in terms of the temperature drop across the layer, is related to the effective
Rayleigh number via the relation Ra = R̂|	T |, where 	T is the horizontal-mean
temperature difference between the upper and lower boundaries. Using a scaling for
the a priori unknown 	T implied by the subsequent analysis, it can be shown that
Ra = O(La−3/2) as La → 0 and, hence, that R̂ = 108 corresponds to Ra = O(106).)
Given this re-interpretation of variables, the results of the present investigation are
equally applicable to LC and to RBC under the stated conditions.
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Figure 1. (a) Contour plot of cross-wind streamfunction ψ in steady state for La = 0.0012.
Positive contour values (right cell) increase monotonically from 0.00368 at the cell perimeter
to 0.0700 in the cell interior in increments of 0.00737. (b) Plot of ψ as a function of the
cross-wind coordinate y at the cell mid-depth z∗ = −1/2 showing that, in contrast to the
downwind vorticity (see figure 2), the streamfunction is smooth and, in fact, nearly harmonic.
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Figure 2. (a) Contour plot of downwind vorticity Ω in steady state for La = 0.0012. Positive
contour values (right cell) increase monotonically from 0.0595 at the cell perimeter to 1.13
along the interior lobes in increments of 0.119. (b) Plots of Ω as a function of the cross-wind
coordinate y for depths z∗ = −1/4, z∗ = −1/2 and z∗ = −3/4. The arrow labelling these curves
indicates the direction of decreasing z∗ (i.e. increasing depth). Note that Ω is nearly uniform
away from the perimeter of each cell.

3. Time-dependent numerical simulations
We implemented a pseudospectral Fourier–Chebyshev code to solve the time-

dependent versions of (2.1)–(2.3), subject to a horizontal periodicity constraint and
boundary conditions (2.5). The linear terms are advanced using the semi-implicit
Crank–Nicolson scheme, while the nonlinear and instability terms are advanced using
the fully explicit second-order Adams–Bashforth method. The resulting system of
linear algebraic equations is solved via matrix diagonalization techniques. The code
has been fully tested and yields results that agree closely with other independently
developed Langmuir circulation solvers. For the given boundary conditions, sustained
convection first occurs at a critical Langmuir number Lac = 1/

√
120 ≈ 0.0913 (Cox

& Leibovich 1993). When La−1 is less than O(104) but greater than La−1
c , a range

of k values can be specified for which white noise initial conditions evolve into
steady cellular flows that are unique to within an arbitrary cross-wind phase shift.
Figures 1–3 show a typical solution in steady state, computed for La = 0.0012 (i.e.
almost two orders of magnitude less than Lac), k = π and dUs/dz = 1 using 64
Fourier and 75 Chebyshev modes.

Several features of this small-La solution are noteworthy. First, these solutions
clearly are strongly nonlinear, as evidenced by the sharp jumps in the downwind
vorticity (see figure 2b) and by the complete vertical and horizontal redistribution
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Figure 3. (a) Contour plot of total downwind velocity vx (or, for RBC, negative of the
temperature anomaly T ) in steady state for La = 0.0012. Contours in the downwelling
zone centred at y ≈ 0.8 decrease monotonically from 0.59 near z = 0 to 0.51 near z = −1 in
increments of 0.01; the corresponding contours in the upwelling zone centred at y ≈ 1.8 increase
monotonically from 0.41 near z = −1 to 0.49 near z = 0 in increments of 0.01. (b) Plots of
vx as a function of depth z for three different cross-wind sections: (i) y∗ = 0.80 (downwelling
zone); (ii) y∗ = 1.3 (middle of the right cell); and (iii) y∗ = 1.8 (upwelling zone). For
comparison, the diagonal line shows the basic-state wind-driven shear flow (or, for RBC, the
negative of the linear conduction profile). Note that the vortices completely redistribute the
downwind momentum (temperature) in the basic state.

of the downwind momentum (or, for RBC, temperature) contained in the basic
state (see figure 3b). The near constancy of the mean (e.g. time-averaged) core
temperature in large-Ra RBC and the concomitant generation of thermal boundary
layers has long been observed in experiments (e.g. Deardorff & Willis 1967); predicted
by the early modelling studies of Gough, Spiegel & Toomre (1975) based on
their ‘single-mode’ convection equations (also see Toomre, Gough & Spiegel 1977);
and identified in the full numerical simulations of the two-dimensional Oberbeck–
Boussinesq equations by Moore & Weiss (1973). In contrast, weakly nonlinear
convection cells exhibit sinusoidal spatial variability and do not modify the basic
state at leading order. Nevertheless, figure 1 shows that the streamfunction remains
smooth and varies roughly harmonically in the cross-wind direction; the smooth
character of the streamfunction is exploited in both the asymptotic analysis and
the construction of hybrid analytical–numerical solutions described in subsequent
sections. Next, there is clear evidence of an asymptotic structure characterized
by near-surface and bottom boundary layers, narrow downwelling and upwelling
zones, corner regions and a nearly inviscid rotational core. Finally, in addition
to being invariant under arbitrary translations in y, the equations and boundary
conditions governing the computational problem are invariant under a 180◦ rotation:
(y, z) → (−y, −z − 1), (vx, Ω, ψ) → (1 − vx, Ω, ψ). Specifically, if a steady
nonlinear spatially periodic convective state [vx(y, z), ψ(y, z), Ω(y, z)] is obtained
with the mid-plane of an up- or downwelling zone located along the z-axis, then
[1 − vx(π/k − y, −z − 1), ψ(π/k − y, −z − 1), Ω(π/k − y, −z − 1)] is also a solution
of (2.1)–(2.3) and (2.5)–(2.6), as is visually evident in the contour plots in figures 1–3.
This discrete rotational symmetry is broken whenever the Stokes-drift gradient is
not constant, as for Langmuir circulation in the open ocean; downwelling zones are
then somewhat narrower and more intense than upwelling regions, in accord with
ocean observations. Here, we focus on the constant Stokes-drift-gradient scenario, i.e.
dUs/dz = 1 in (2.2); thus, we search for solutions possessing this symmetry. This case
should be more tractable analytically because the numerical solutions indicate that
Ω(y, z) is nearly uniform in the inviscid vortex core (see figure 2): when dUs/dz is
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constant, steady two-dimensional Langmuir cells – which satisfy the CL rather than
Navier–Stokes equations – obey a Prandtl–Batchelor theorem in the small-La limit
(see § 4), greatly simplifying the required asymptotic matching. The simulations of Li
& Garrett (1993) suggest that this may not be the case when the Stokes-drift gradient
varies (but see § 4).

4. Scalar homogenization
The numerical experiments described in § 3 suggest that, for La � 1, a steady state

exists with viscous layers surrounding an inviscid core in which both vx(y, z) and
Ω(y, z) are homogenized. As shown below, these observations follow from a small-La

analysis of certain integral constraints derivable from (2.1)–(2.3). The homogenization
results are then exploited in the subsequent analysis.

First, integrating (2.1) from y = 0 to y = π/k and from z = −1 to z = z∗ (an
arbitrary depth within the domain) and using the divergence theorem yields∮

C

vnvx dl = La

∮
C

∂vx

∂n
dl, (4.1)

where C is the curve bounding the spatial domain of integration, dl is an element of
arclength along C, and vn is the velocity component normal to C. Evaluating these
integrals and noting that the zero perturbation-flux boundary condition in (2.5) can
be expressed as ∂vx/∂z = 1 at z = −1 (and z = 0) gives the following exact formula:

La
π

k
=

∫ π/k

0

(
La

∂vx

∂z
− wvx

) ∣∣∣∣
z=z∗

dy. (4.2)

This equation indicates that for a steady flow to be realized, the vertical flux of
downwind momentum, integrated across the cell, must be constant (i.e. independent
of z), given the symmetry constraints at y = 0 and y = π/k.

Next, we demonstrate that vx is homogenized in the vortex core as La → 0. Often
referred to as ‘flux expulsion’ or ‘scalar homogenization’, this process is known to
govern the long-time distribution of passive scalars in a two-dimensional cellular
flow field in the weak-diffusion limit (see e.g. Rhines & Young 1983). Following
standard arguments, we show the same result holds for the active scalar field vx(y, z).
Integrating (2.1) over an area of the cellular flow and using the divergence theorem
again yields (4.1). Upon selecting the closed curve C to be a streamline (so vn = 0 on
C), the exact result

La

∮
C

∂vx

∂n
dl = 0 (4.3)

is obtained. This result holds for all La and, thus, is valid in the limit as La → 0.
Viscous forces are negligible in that limit, except in horizontal boundary layers and
vertical jets and plumes. In the inviscid core, (2.1) simplifies to

∂ψ

∂z

∂vx

∂y
− ∂ψ

∂y

∂vx

∂z
= 0, (4.4)

which (abusing notation) has the solution vx = vx(ψ). Thus, in the small-La limit,
and for C in the inviscid core, (4.1) becomes

0 =

∮
C

v′
x(ψ)

∂ψ

∂n
dl = v′

x(ψ)

∮
C

∂ψ

∂n
dl, (4.5)
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where the prime denotes ordinary differentiation, implying v′
x(ψ)ΓC = 0. Since the

circulation ΓC around C is non-zero,

vx = Ū , (4.6)

a constant, in the core. We note that (4.6) satisfies (2.1) to all algebraic orders in
La. (In § 5, it is shown that vx(y, z) satisfies a diffusion equation in suitably rescaled
and transformed coordinates in the viscous layers around the cell perimeter; thus,
no corrections algebraic in La are forced in the interior.) In fact, given the problem
specification, any spatially uniform downwind velocity component can be added to
a solution of (2.1)–(2.3) with boundary conditions (2.5)–(2.6) and the result is also a
solution. Thus, without loss of generality, we are at liberty to set Ū ≡ 1/2.

Finally, using the homogenization of vx , we can demonstrate that a Prandtl–
Batchelor theorem holds for the two-dimensional Craik–Leibovich (rather than
the two-dimensional Navier–Stokes) equations. In vector form, the steady two-
dimensional CL equations can be written as

v · ∇ v = −∇π + U s × ω + La∇2v,

or, equivalently, as

ω × (v + U s) = −∇
(

π +
|v|2
2

)
− La(∇ × ω), (4.7)

where π is a filtered (surface-wave modified) pressure, and

v = vx ı̂ + vĵ + wk̂, (4.8)

ω = Ωı̂ + ωyĵ + ωzk̂ =

(
∂w

∂y
− ∂v

∂z

)
ı̂ +

(
∂vx

∂z

)
ĵ +

(
−∂vx

∂y

)
k̂, (4.9)

and ∇ · v = 0. Taking the dot product of (4.7) with an infinitesimal displacement
vector dl tangent to a streamline in the (y,z)-plane, and then integrating around a
closed streamline C, yields the following exact result:∮

C

Us

(
∂vx

∂y
ĵ +

∂vx

∂z
k̂

)
· dl = La

∮
C

(
∂Ω

∂z
ĵ − ∂Ω

∂y
k̂

)
· dl. (4.10)

Equation (4.10) is a statement of energy balance: the work done by the CL vortex (or
buoyancy) force as the flow traverses a closed loop C (the left-hand side) is balanced
by the frictional dissipation of the kinetic energy of the motion along that path (the
right-hand side). Again, this statement holds for any La and, in particular, is valid as
La → 0. In that limit, vx in the core is uniform to all algebraic orders; hence, along a
circuit C coincident with any closed streamline within the core, the left-hand side of
(4.10) is exponentially small in La, implying∮

C

(
∂Ω

∂z
ĵ − ∂Ω

∂y
k̂

)
· dl = 0. (4.11)

The vorticity equation (2.2) in the inviscid core becomes

∂ψ

∂z

∂Ω

∂y
− ∂ψ

∂y

∂Ω

∂z
= 0, (4.12)

since, crucially, vx is constant there. Thus, Ω = Ω(ψ), implying

Ω ′(ψ)

∮
C

(vĵ + wk̂) · dl = Ω ′(ψ)ΓC = 0. (4.13)
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Figure 4. Hypothesized multi-region asymptotic structure of a steady Langmuir cell as
La → 0. Note that the coordinate s introduced in § 5 increases in the negative y-direction
for positive Ω̄ , with the origin s = 0 situated at the top of the upwelling zone (in the upper
left-hand corner of the cell).

Noting that the circulation ΓC around the streamline C is non-zero, we deduce that

Ω = Ω̄, (4.14)

a constant, in the vortex core; that is, this flow satisfies a Prandtl–Batchelor (PB)
theorem. Physically, as La → 0, the CL vortex (or buoyancy) torque vanishes in the
vortex core, allowing weak viscous effects to homogenize the vorticity.

It is shown in § 5 that Ω(y, z) also satisfies diffusion equations in the viscous layers
at the edges of the cell; like vx(y, z), Ω(y, z) therefore is asymptotic to a constant in
the vortex core to all algebraic orders in La. Unlike Ū , however, the value of Ω̄ is not
arbitrary and must be determined in the course of the analysis. We observe that the
exact form of the Stokes-drift velocity does not explicitly enter the above derivation;
thus, the PB theorem is expected to hold for flows with more realistic, exponentially
decaying Stokes drift profiles. The key assumption, perhaps implicitly influenced by
the form of Us(z), is that there exists a family of closed streamlines that is bounded
away from regions of viscous dissipation. If, on the contrary, all streamlines pass
through a viscous layer, then the above arguments fail, and the PB theorem will not
necessarily hold.

5. Asymptotic analysis
The numerical solutions presented in § 3 and the homogenization results derived

in § 4 motivate the hypothesized small-La asymptotic structure shown in figure 4.
In the subsections that follow, we describe the distinguished limits that characterize
the various subregions of the flow, obtain and analytically solve simplified equations
in these regions, and demonstrate that the solutions can be asymptotically matched
from one subdomain to the next.
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5.1. Region II. Inviscid vortex core

Over the bulk of the domain, the flow behaves inviscidly. Keeping y, z fixed, letting
La → 0 and recalling (4.6) and (4.14), we find that

vx(y, z) ∼ Ū + E.S.T ., (5.1)

ψ(y, z) ∼ ψII(y, z) + La1/2ψ
(1)
II (y, z), (5.2)

Ω(y, z) ∼ Ω̄ + E.S.T ., (5.3)

where E.S.T . refers to terms exponentially small in La, satisfy the governing equations
although not all of the boundary conditions. As a consequence of (5.3), ψII(y, z)
satisfies

∂2ψII

∂y2
+

∂2ψII

∂z2
= −Ω̄, (5.4)

subject to the boundary conditions that ψII(y, z) = 0 along z = 0, −1 and y = 0, π/k.
The solution can be expressed as an infinite series:

ψII(y, z) =

∞∑
n=1

ψn(z) sin (nky), (5.5)

where n is an odd integer and

ψn(z) =
4Ω̄

πk2n3

[
1 −

cosh
(
nk

(
z + 1

2

))
cosh (nk/2)

]
. (5.6)

Since only odd n appear in the infinite sum, the magnitude of the second term in the
series is only about 1/27 that of the n = 1 term; i.e. ψII(y, z) is nearly a pure sinusoid
in y, as we have verified via comparisons with the numerical solutions (see figure 1).

For matching with both the near-surface boundary layer and the downwelling jet,
the behaviour of ψII(y, z) as y and z separately approach zero is required. Assuming

ψ(y, z) ∼ ψII(y, 0) + z
∂ψII

∂z
(y, 0) as z → 0−,

ψ(y, z) ∼ ψII(0, z) + y
∂ψII

∂y
(0, z) as y → 0+,

i.e. that

ψ(y, z) ∼ vII(y, 0) z as z → 0−, (5.7)

ψ(y, z) ∼ −wII(0, z) y as y → 0+, (5.8)

leading-order matching of ψ(y, z) between the viscous layers and the interior is readily
accomplished. Using (5.5) and (5.6), we obtain:

vII(y, 0) =

∞∑
n=1

(
− 4Ω̄

πkn2

)
tanh

(
nk

2

)
sin (nky), (5.9)

and

wII(0, z) =

∞∑
n=1

(
− 4Ω̄

πkn2

)[
1 −

cosh
(
nk

(
z + 1

2

))
cosh (nk/2)

]
, (5.10)

where the sums are again taken only over odd n.
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Finally, we emphasize that the total downwind velocity vx(y, z) = Ub(z)+u(y, z) ∼ Ū

is constant in the bulk interior of the convecting layer (see figure 3). Unlike weakly
nonlinear roll vortices, fully nonlinear Langmuir cells completely restructure the
wind-driven basic-state shear flow.

5.2. Region I. Near-surface boundary layer

To satisfy the tangential-stress and flux conditions, boundary layers must exist near
the free surface and the base of the layer. Owing to the rotational symmetry of the
problem, we need only consider the z = 0 boundary layer, where the vertical length
scale must be O(La1/2) for vertical diffusion of momentum to balance advection.
Using the divergence-free condition, the streamfunction also is found to be O(La1/2),
confirming that relatively little fluid passes through the thin layer. Although the
numerical simulations indicate that the near-surface downwind velocity perturbation
u(y, z) is O(1) (again, see figure 3), the deviation of vx(y, z) from the core value Ū

is O(La1/2). This scaling is most easily deduced from the constant flux condition in
(2.5). One important implication is that the vertical vorticity is asymptotically small
within the near-surface and bottom boundary layers. Finally, the numerics reveal that
the downwind vorticity achieves O(1) values within the surface boundary layer. (For
sufficiently small La, the numerical simulations indicate that the downwind vorticity
reaches a maximum at the edge of the boundary layer, then decreases and asymptotes
to a constant value within the inviscid core; see figure 2.) Thus, we propose

vx(y, z) ∼ Ū + La1/2uI (y, Z), (5.11)

ψ(y, z) ∼ La1/2ψI (y, Z), (5.12)

Ω(y, z) ∼ ΩI (y, Z), (5.13)

where Z ≡ z/La1/2. Taking the inner limit of (2.1)–(2.3), with y, Z fixed as La → 0,
we obtain the leading-order equations

∂2ψI

∂Z2
= 0 ⇒ ψI (y, Z) = V (y)Z, (5.14)

∂2uI

∂Z2
= V (y)

∂uI

∂y
− V ′(y)Z

∂uI

∂Z
, (5.15)

∂2ΩI

∂Z2
= V (y)

∂ΩI

∂y
− V ′(y)Z

∂ΩI

∂Z
, (5.16)

where a prime denotes ordinary differentiation. Comparing (5.12) and (5.14) with (5.7),
we observe that ψ(y, z) in the boundary layer can be matched with the interior solution
by setting V (y) = vII(y, 0) given in (5.9). Moreover, with ψI(y, Z) known (to within the
constant factor Ω̄), the boundary-layer equations (5.15) and (5.16) for uI (y, Z) and
ΩI (y, Z) linearize – a crucial simplification. Because the vertical vorticity is weak, these
equations decouple. Equation (5.15) must be solved subject to the boundary conditions

∂uI

∂Z
(y, 0) = 1, (5.17)

uI (y, Z) → 0 as Z → −∞, (5.18)

while the boundary conditions for (5.16) are

ΩI (y, 0) = 0, (5.19)

ΩI (y, Z) → Ω̄ as Z → −∞. (5.20)
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The advection–diffusion equations (5.15), (5.16) with conditions (5.18) and (5.20)
ensure that (5.11) and (5.13) can be matched, at leading order, with (5.1) and (5.3).
We defer solution of (5.15) and (5.16) until § 5.4.

5.3. Region III. Downwelling jet

In the narrow downwelling jet (region III), analogous reasoning suggests that

vx(y, z) ∼ Ū + La1/2uIII(Y, z), (5.21)

ψ(y, z) ∼ La1/2ψIII(Y, z), (5.22)

Ω(y, z) ∼ ΩIII(Y, z), (5.23)

where Y ≡ y/La1/2. Keeping Y, z fixed as La → 0, we obtain the leading-order
equations

∂2ψIII

∂Y 2
= 0 ⇒ ψIII(Y, z) = − W (z)Y, (5.24)

∂2uIII

∂Y 2
= W (z)

∂uIII

∂z
− W ′(z)Y

∂uIII

∂Y
, (5.25)

∂2ΩIII

∂Y 2
= W (z)

∂ΩIII

∂z
− W ′(z)Y

∂ΩIII

∂Y
+

∂uIII

∂Y
. (5.26)

Note that (5.22), (5.24) and (5.8) imply that ψ(y, z) within region III can be matched
with the interior solution if W (z) = wII(0, z) (cf. (5.10)). Since ψIII(Y, z) is known apart
from the constant Ω̄ , the boundary-layer equations (5.25) and (5.26) for uIII(Y, z) and
ΩIII(Y, z) linearize. Unlike the near-surface boundary layer, however, the vertical
vorticity in the downwelling jet is O(1); thus, (5.25) and (5.26) do not fully decouple.
These equations must be solved subject to the following boundary conditions:

∂uIII

∂Y
(0, z) = 0, (5.27)

uIII (Y, z) → 0 as Y → ∞, (5.28)

ΩIII(0, z) = 0, (5.29)

ΩIII(Y, z) → Ω̄ as Y → ∞, (5.30)

which ensure that leading-order matching of vx(y, z) and Ω(y, z) between the
downwelling zone and the vortex core is possible.

5.4. Region I and III solutions

To solve for the downwind velocity and vorticity in the surface boundary layer
and downwelling jet, the Von Mises coordinate transformation, in which the
streamfunction replaces Z and Y as the independent variable in regions I and III,
respectively, is used. This transformation has the advantage that it converts the non-
constant-coefficient advection–diffusion equations to constant-coefficient diffusion
equations following a further transformation of the parabolic coordinate. The new
independent coordinates are sometimes referred to as Crocco’s variables.

In region I, we set uI (y, Z) = UI (s, ψI ), V (y) = V(s), where

s(y) ≡
∫ y

π/k

V (τ ) dτ =

∞∑
n=1

(
4Ω̄

πk2n3

)
tanh

(
nk

2

)[
1 + cos (nky)

]
(5.31)
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(the sum is taken over odd n), which converts (5.15) and (5.17)–(5.18) to:

∂UI

∂s
=

∂2UI

∂ψ2
I

, (5.32)

∂UI

∂ψI

(s, 0) =
1

V(s)
, (5.33)

UI (s, ψI ) → 0 as ψI → ∞. (5.34)

Similarly, setting ΩI (y, Z) = Ω̃I (s, ψI ) ≡ Ω̄ − ωI (s, ψI ) yields:

∂ωI

∂s
=

∂2ωI

∂ψ2
I

, (5.35)

ωI (s, 0) = Ω̄, (5.36)

ωI (s, ψI ) → 0 as ψI → ∞. (5.37)

In region III, we set uIII(Y, z) = UIII(ψIII, r), W (z) = W(r), where

r(z) ≡
∫ z

0

W (τ ) dτ =

∞∑
n=1

(
− 4Ω̄

πkn2

) [
z +

1 − enkz + e−nk(z+1) − e−nk

nk (1 + e−nk)

]
(5.38)

(again, the sum is taken over odd n), which converts (5.25) and (5.27)–(5.28) to:

∂UIII

∂r
=

∂2UIII

∂ψ2
III

, (5.39)

∂UIII

∂ψIII

(0, r) = 0, (5.40)

UIII (ψIII, r) → 0 as ψIII → ∞. (5.41)

Finally, setting ΩIII(Y, z) = Ω̃III(ψIII, r) ≡ Ω̄ − ωIII(ψIII, r) yields:

∂ωIII

∂r
=

∂2ωIII

∂ψ2
III

− 1

W(r)

∂UIII

∂ψIII

, (5.42)

ωIII(0, r) = Ω̄, (5.43)

ωIII(ψIII, r) → 0 as ψIII → ∞. (5.44)

The solutions to the diffusion problems in region I are standard (see e.g. Carslaw
& Jaeger 1959, p.79):

UI (s, ψI ) = − 1√
π

∫ s

0

exp
(
−ψ2

I /4(s − s̄)
)

V(s̄)
√

s − s̄
ds̄

+
1

2

∫ ∞

0

dUI0

dη
(η)

[
erf

(
ψI − η

2
√

s

)
− erf

(
ψI + η

2
√

s

)]
dη, (5.45)

where UI0
(ψI ) is the (as yet unknown) profile of UI (s, ψI ) as s → 0; and

Ω̃I (s, ψI ) = Ω̄ erf

(
ψI

2
√

s

)
− 1

2
√

π
√

s

∫ ∞

0

(
Ω̄ − Ω̃I0

(η)
)

×
[
exp

(
−(ψI − η)2

4s

)
− exp

(
−(ψI + η)2

4s

)]
dη, (5.46)
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where Ω̃I0
(ψI ) is the profile of Ω̃I (s, ψI ) as s → 0. Similarly, the solution to (5.39)

and the associated boundary conditions is

UIII(ψIII, r) =
1

2

∫ ∞

0

dUIII 0

dη
(η)

[
erf

(
ψIII − η

2
√

r

)
− erf

(
ψIII + η

2
√

r

)]
dη, (5.47)

where UIII 0
(ψIII) is the unknown profile of UIII(ψIII, r) as r → 0. Finally, the solution

to (5.42) is formally identical (with obvious notational changes) to (5.46) except for
the addition of a term of the form f (r)∂UIII/∂ψIII, where

f (r) =

∫ r

0

dr̄

W(r̄)
= z(r),

which accounts for the downwind vorticity generated by the Craik–Leibovich vortex
force acting within the downwelling zone. Using (5.47),

Ω̃III(ψIII, r) = Ω̄ erf

(
ψIII

2
√

r

)
+

1

2
√

π
√

r

∫ ∞

0

[
z(r)

dUIII 0

dη
(η) −

(
Ω̄ − Ω̃III 0

(η)
)]

×
[
exp

(
−(ψIII − η)2

4r

)
− exp

(
−(ψIII + η)2

4r

)]
dη, (5.48)

where Ω̃III 0
(ψIII) is the function Ω̃III(ψIII, r) as r → 0.

To evaluate (5.45)–(5.48), the unknown ‘upstream’ profiles of vx(y, z) and Ω(y, z)
in the near-surface boundary layer and downwelling jet must be determined. This
requires consideration of the flow passing through the corner regions in figure 4, as
discussed further in the next subsection. The unknown core vorticity also must be
determined. We note in passing that, were Ω̄ known, the quadratures (5.45)–(5.48)
could be used to generate approximate solutions everywhere in these viscous layers
simply by substituting a reasonable functional form for each unknown upstream
profile.

5.5. Region i. Inertial corner region

The near-surface boundary-layer flow is re-directed into a narrow downwelling
jet upon passage through the corner region i, where (as evident in the numerical
simulations) the horizontal and vertical length scales are commensurate. The vertical
scale in region i must increase relative to that in region I, since the horizontal
boundary-layer flow slows as the stagnation point (y, z) = (0, 0) is approached.
Analysis of (5.4) suggests that V (y) ∼ 2Ω̄y ln y as y → 0+ and that W (z) ∼ −2Ω̄z ln |z|
as z → 0−. To match the volume fluxes between the corner and the boundary-layer
and downwelling jet, we rescale y and z such that Yi ≡ y/La1/4 and Zi ≡ z/La1/4 (see
Childress & Gilbert 1995, pp. 135–136) and consider the limiting process in which Yi ,
Zi remain fixed as La → 0. We also rescale the dependent variables:

vx(y, z) ∼ Ū + La1/2ui(Yi, Zi), (5.49)

ψ(y, z) ∼ La1/2[lnLa ψ
(0)
i (Yi, Zi) + ψ

(1)
i (Yi, Zi)] ≡ La1/2ψi(Yi, Zi), (5.50)

Ω(y, z) ∼ Ωi(Yi, Zi). (5.51)

Substituting into (2.1)–(2.3), we find that viscous effects and the CL vortex force
are absent at leading order, i.e. that ui(Yi, Zi) ≡ Ui(ψi) and Ωi(Yi, Zi) ≡ Γi(ψi),
where the functions Ui(ψi) and Γi(ψi) are determined via matching upstream with
the flow in region I. Sufficiently close to (y, z) = (0, 0), viscous sublayers must
arise to accommodate the transformation of the constant-stress boundary condition
on vx(y, z) in the surface boundary layer into a zero-stress symmetry condition in
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the downwelling zone, but these are not discussed further here. We comment that
experience with other boundary-layer problems also suggests that the flow in the
corner is inviscid and passive (see e.g. Lyne 1971; Jimenez & Zufiria 1987; Metcalfe
& Pedley 2001). In § 6, we construct an asymptotic estimate for the primary unknown,
Ω̄ , which controls the strength of the cellular flow. With Ω̄ known, the specification of
vx(y, z) (and subsequently Ω(y, z)) in the boundary layers and up- and downwelling
jets can be completed by formulating and solving a ‘Childress-like’ cell problem
(see Childress 1979). As discussed in § 7, this computation can be effected without
performing a detailed analysis of the viscous corner sublayers, and relies only on the
passive advection of vx(y, z) and Ω(y, z) through the outer (inertial) corner regions.

6. Determination of the core vorticity
To determine Ω̄ , we again make use of certain integral constraints. The first is

obtained by multiplying the vorticity equation (2.2) by ψ and integrating over the
area of the cell. The advection terms drop out, leaving the following exact result:

La

∫ 0

−1

∫ π/k

0

Ω2 dy dz = −
∫ 0

−1

∫ π/k

0

ψ
∂vx

∂y
dy dz. (6.1)

Equation (6.1), which also can be derived by taking the inner product of the cellular
(i.e. y–z) velocity vector with the momentum equation and integrating over the
domain, expresses global energy conservation: the work done by the CL vortex (or
buoyancy) torque is balanced by the viscous dissipation of energy, since there is
no net flux of energy into or out of the cell. Noting that the area of the cell is
π/k, the leading contribution to the term on the left-hand side is LaΩ̄2π/k. Since
∂vx/∂y = O(1) in the up- and downwelling zones, the area of which is O(La1/2) and
in which ψ = O(La1/2), the dominant contribution to the right-hand side of (6.1)
arises in those subdomains and is also O(La). Exploiting the symmetry of the up-
and downwelling zones, (6.1) at leading order in La therefore reduces to

Ω̄2 ∼ −2k

π

∫ 0

−1

∫ ∞

0

ψIII

∂uIII

∂Y
dYdz,

= −2k

π

∫ 0

−1

∫ ∞

0

ψIII

∂UIII

∂ψIII

dψIII dz,

= −2k

π

∫ 0

−1

[
ψIIIUIII

∣∣∣∣
∞

0

−
∫ ∞

0

UIII dψIII

]
dz,

=
2k

π

∫ 0

−1

∫ ∞

0

UIII dψIII dz, (6.2)

using the boundary and matching conditions on ψIII and UIII.
It would appear that evaluation of the integral arising in (6.2) requires UIII(ψIII, r(z))

to be completely specified. In fact, this integral can be computed asymptotically by
employing (4.2), a second global constraint: in steady state, the convection zone is a
constant (downwind-momentum or heat) flux layer. As La → 0, the exact relation
(4.2) can be approximated asymptotically as:

π

2k
∼ −W (z)

∫ ∞

0

uIII(Y, z) dY =

∫ ∞

0

UIII(ψIII, r) dψIII. (6.3)
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Figure 5. Steady-state solutions computed numerically for La = 0.0001 for three different
cell aspect ratios. The plots show the core vorticity at the cell mid-plane as a function of the
cross-wind coordinate y and confirm that Ω̄ ∼ 1 independently of k as La → 0.

Note that this result is valid for any Ω̄ . With the streamfunction expressed as
ψ(y, z) = Ω̄Ψ (y, z) for some given function Ψ (y, z) satisfying the boundary conditions
on ψ around the cell perimeter, (2.1) is linear and (4.2) (and hence (6.3)) is merely a
solvability condition on vx(y, z) for the given streamfunction. However, by substituting
(6.3) into (6.2), the following simple result is obtained:

Ω̄2 ∼ 1 ⇒ Ω̄ ∼ ±1. (6.4)

The sign of Ω̄ determines the sense of the cellular flow; for consistency with figure 4,
we select the positive root. We emphasize that (6.4) is not a mere order-of-magnitude
estimate but, rather, a precise asymptotic result which indicates that the finite
‘amplitude’ of the vortex motion, Ω̄ , is independent of the cell wavenumber k. To
test this somewhat surprising prediction, the pseudospectral algorithm described in
§ 3 was modified by using a Chebyshev–Chebyshev (rather than Fourier–Chebyshev)
‘tensor-product’ grid (Trefethen 2000) and lateral symmetry conditions (2.6) to provide
adequate resolution of the boundary layers and up- and downwelling jets. To further
improve the resolution of the viscous layers, a tensor-product rational mapping was
employed for certain computations. In all cases, a minimum of ten grid points was
used to resolve the viscous layers. Solutions were computed for La = 0.0001 for three
different values of k. As evident in figure 5, all solutions exhibit a nearly constant
core vorticity with a value close to unity in each case, confirming the asymptotic
prediction (6.4).

7. A Childress-like cell problem
Having determined Ω̄ , we can compute vx(y, z) in the boundary layers and up-

and downwelling zones without carrying out detailed matching of the flow fields
through the viscous corner sublayers (to determine the unknown profiles arising in
(5.45) and (5.47)) by formulating a ‘Childress-like’ cell problem (see Childress 1979).
In particular, we exploit the fact that in the outer (inviscid) corner subdomains, U is
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passively advected between the boundary layers and plumes (as shown in § 5.5), where
U and ψ with subscripts omitted here refer to the corresponding region I or III scaled
variables, and the ‘time-like’ coordinates s and r are replaced with the single variable ξ

which runs around the perimeter of the cell. In the small-La limit, the corner domains
have dimensions that are small compared with the streamwise extent of the boundary
layers and plumes. Thus, as a function of ξ and ψ , U satisfies a simple diffusion
equation around the entire cell perimeter subject to specified flux boundary conditions
and a periodicity rather than initial condition in the ξ coordinate. At the ‘points’
joining the boundary layers and plumes, U is continuous except, possibly, at ψ = 0,
where the boundary conditions require a discontinuity in ∂U/∂ψ and may cause a
discontinuity in U itself. The resulting cell problem is similar to that formulated by
Childress (1979), Roberts (1979), Jimenez & Zufiria (1987) and Soward (1987), but:
(i) arises here as the solution to a fully nonlinear problem (i.e. for unit rather than
infinite Prandtl number); and (ii) does not give rise to an integral equation and, in
fact, can be solved explicitly (e.g. without recourse to the Wiener–Hopf method).

Making use of the result Ω̄ ∼ 1, we thus have the following algorithm for
determining U .

(a) Solve ∇2ψII = −1 on 0 � y � π/k, −1 � z � 0 with ψII = 0 boundary
conditions.

(b) Obtain V (y), W (z), s(y), r(z) from the solution to (a).
(c) Compute the lengths of the near-surface boundary layer l1 ≡ s(0) and

downwelling zone l2 ≡ r(−1) in the s and r coordinates. Define l ≡ 2l1 + 2l2,
the cell perimeter in these units.

(d) Solve the diffusion equation ∂U/∂ξ = ∂2U/∂ψ2, where 0 � ψ < ∞, 0 < ξ < l,
subject to

∂U

∂ψ
= F (ξ ) =

1

V(ξ )
(0 � ξ < l1),

∂U

∂ψ
= F (ξ ) = 0 (l1 � ξ < l1 + l2),

∂U

∂ψ
= F (ξ ) = − 1

V(ξ − l1 − l2)
(l1 + l2 � ξ < 2l1 + l2),

∂U

∂ψ
= F (ξ ) = 0 (2l1 + l2 � ξ < l),

at ψ = 0; the far-field condition U (ξ, ψ) → 0 as ψ → ∞; and the periodicity
constraint

U (ξ + nl, ψ) = U (ξ, ψ) (n= 1, 2, 3 . . .).

Referring to (5.45), the formal solution to this problem can be expressed as

U (ξ, ψ) = − 1√
π

∫ ξ

0

F (ξ − p)
e(−ψ2/4p)

√
p

dp

+
1

2

∫ ∞

0

dU0

dη
(η)

[
erf

(
ψ − η

2
√

ξ

)
− erf

(
ψ + η

2
√

ξ

)]
dη. (7.1)

To avoid iterating to determine U0(ψ), the unknown profile of U (ξ, ψ) at ξ = 0, we
follow Jimenez & Zufiria (1987) by re-expressing (7.1) exploiting the periodicity of
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U (ξ, ψ):

U (ξ, ψ) = − 1√
π

∫ ξ+nl

0

F (ξ + nl − p)
e(−ψ2/4p)

√
p

dp

+
1

2

∫ ∞

0

dU0

dη
(η)

[
erf

(
ψ − η

2
√

ξ + nl

)
− erf

(
ψ + η

2
√

ξ + nl

)]
dη.

Taking the limit as n → ∞, the second integral vanishes, and observing that F (ξ ) is
also nl-periodic then yields

U (ξ, ψ) = − 1√
π

∫ ∞

0

F (ξ − p)
e(−ψ2/4p)

√
p

dp

= − 1√
π

∫ ξ

0

[·] dp − 1√
π

∫ ∞

ξ

[·] dp

≡ I1 + I2, (7.2)

where we split the integral into two contributions for computational convenience. The
first integral can be expressed as

I1 = − 1√
π

∫ ξ

0

F (s)
e(−ψ2/4(ξ−s))

√
ξ − s

ds,

and, recalling that ds/V(s) = dy, if e.g. ξ is in the downwelling zone (l1 < ξ < l2),

I1 =
1√
π

∫ π/k

0

e(−ψ2/4(ξ−s(y)))

√
ξ − s(y)

dy,

where I1 can be evaluated without special precautions. Again for computational
convenience, I2 can be rewritten as an infinite sum of integrals around the cell
perimeter (Jimenez & Zufiria 1987):

I2 =

∞∑
n=1

[
− 1√

π

∫ l

0

F (μ)
e(−ψ2/4(ξ−μ+nl))

√
ξ − μ + nl

]
dμ

=

∞∑
n=1

1√
π

∫ l1

0

1

V(s)

[
e(−ψ2/4(ξ−s−l1−l2+nl))

√
ξ − s − l1 − l2 + nl

− e(−ψ2/4(ξ−s+nl))

√
ξ − s + nl

]
ds

=

∞∑
n=1

− 1√
π

∫ π/k

0

[
e(−ψ2/4(ξ−s(y)−l1−l2+nl))

√
ξ − s(y) − l1 − l2 + nl

− e(−ψ2/4(ξ−s(y)+nl))

√
ξ − s(y) + nl

]
dy,

where we note that for large n, ψ fixed and O(1), the term in [·] ∼ (l1+l2)/(2l3/2n3/2).
In figure 6, the asymptotic solution for vx(y, −1/2), computed by numerically

evaluating the quadratures defining I1 and I2 and reconstructing vx for La = 0.0001
and k = 2π, is compared to the corresponding steady-state numerical solution
obtained using the Chebyshev–Chebyshev pseudospectral code. The quantitative
agreement between the two solutions is satisfactory given that the fully analytical
solution has no adjustable coefficients and that the chosen value of La, although
small compared to unity, is necessarily finite. Indeed, the discrepancy between the two
solutions is consistent with O(La| ln La|) corrections to the leading-order asymptotic
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Figure 6. Comparison of the analytical (dashed) and steady-state numerical (solid) solutions
for vx(y, z) at La = 0.0001 and k = 2π.

expansion of vx(y, z)− Ū arising in the viscous layers, as is suggested by a preliminary
higher-order matching analysis between the corner and the boundary layer and
downwelling zone. The Childress solution for vx(y, z) at a given location within the
downwelling zone (e.g. at the mid-depth z = −1/2) can be used to evaluate the left-
hand side of (5.47), enabling the unknown profile dUIII 0

(η)/dη to be determined by
Fourier cosine transforming both sides of the equation. Although not pursued here,
the result can be substituted into (5.48), and then (5.46) and (5.48) can be equated
at (s(0), r = 0) and (s = 0, r(−1)) to determine Ω̃I0

(η) and Ω̃III 0
(η); note that there

is no discontinuity in the imposed boundary conditions on Ω(y, z) along the edge of
the cell as the corners are traversed. Thus, in principle, Ω(y, z) also can be completely
determined by this asymptotic analysis.

8. Hybrid analytical–computational method
A simple approximate hybrid analytical–computational solution for vx(y, z) can

be obtained by substituting the analytically determined streamfunction given in (5.5)
and (5.6), with Ω̄ ≡ 1, into the downwind momentum equation (2.1) and solving
the resulting equation numerically. This approach has the advantage that it avoids
the analytical complexities of the asymptotic solution for vx while requiring only
a single numerical inversion of a suitably discretized linear differential operator; in
contrast, a full numerical computation of vx(y, z) requires that the fully coupled
nonlinear system of equations (2.1)–(2.3) be solved iteratively or by advancing the
corresponding time-dependent system to steady state. Compared to these alternatives,
the hybrid approach is significantly easier to program, has more modest computational
memory requirements and requires much less computing time (see below). With vx(y, z)
obtained using the hybrid algorithm, the result can be substituted into (2.2) and the
same method used to calculate Ω(y, z). The key observation is that, as La → 0, the
analytical solution for ψII(y, z) provides a good approximation to ψ(y, z) and its first
spatial derivatives with respect to y and z, i.e. to v(y, z) and w(y, z), over the entire
domain: unlike Ω(y, z) and vx(y, z), ψ(y, z) does not exhibit regions of sharp gradients
(see figure 1). This specification reduces (2.1) to a linear advection–diffusion equation.
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Figure 7. Comparison of the full numerical (left) and hybrid analytical–computational (right)
solutions for Ω(y, z) and vx(y, z) for La = 0.0012 and k = π. The upper plots show the steady
vorticity field Ω(y, z). The lower plots show the total downwind velocity (or temperature)
field vx(y, z). Contour levels are identical to those in figures 2 and 3, respectively. In the plots
of vx(y, z∗) versus y, the arrows indicate the direction of decreasing z∗ (increasing depth),
with the uppermost curve corresponding to z∗ = −1/4, the middle curve to z∗ = −1/2 and the
lowest curve to z∗ = −3/4. The hybrid solutions were computed by numerically solving (2.1)
and (2.2) subject to cell boundary conditions (2.5) and (2.6) using the analytically-determined
streamfunction given in (5.5) and (5.6) with Ω̄ ≡ 1.

Figure 7 shows the close quantitative agreement between the semi-analytical and
full numerical solutions for Ω(y, z) and vx(y, z) for the relatively modest value of
La = 0.0012. While the full numerical simulations required O(10) hours (on a Pentium
M 1.86 GHz processor), the hybrid analytical–numerical solutions required less than
one minute to compute.

9. Conclusion
We have used a complement of asymptotic analysis and well-resolved pseudo-

spectral numerical simulations to elucidate the structure of steady two-dimensional
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Langmuir circulation and Rayleigh–Bénard convection in the weak-dissipation/
strong-forcing limit (i.e. as La → 0, or Ra → ∞ at unit Prandtl number). Our analysis
extends earlier studies of large Rayleigh-number, infinite Prandtl-number thermal
convection, and related investigations of passive scalar transport and flux expulsion
by eddies, in which the cellular flow satisfies a linearized momentum equation or is
prescribed. In contrast, here the full nonlinear momentum equation is treated: the
vorticity in the core of the cell is dominated by nonlinear inertial rather than linear
viscous effects and, in steady state, approaches a uniform value Ω̄ .

A central result of the asymptotic analysis is that |Ω̄ | ∼ 1 as La → 0, independently
of the cell aspect ratio. This result follows from the homogenization of Ω(y, z) and
vx(y, z) – the temperature in Rayleigh–Bénard convection or the downwind velocity
in Langmuir circulation – in the vortex core and from two integral constraints. A
global energy budget reveals that the dominant contribution to the O(La) work done
by the buoyancy or CL vortex torque arises in narrow up- and downwelling zones
of thickness O(La1/2), while the dominant contribution to the viscous dissipation of
kinetic energy occurs in the vortex core (not in the corners as speculated by Moore &
Weiss 1973). Although the core behaves as a dynamically inviscid region, the O(La)
energy dissipation in the core dominates that in the boundary layers. This slightly
counter-intuitive result is well-known in the context of free-surface boundary layers
(see Batchelor 1967, p. 367), where the primary contribution to the volume-integrated
energy dissipation is induced by irrotational straining outside of the boundary layer.
For the convective states investigated here, the flow in the core has uniform vorticity,
but the streamlines are not strictly circular, and fluid elements are subjected to
significant straining as they translate and rotate. The picture that emerges is that the
kinetic energy produced in the up- and downwelling zones is advected around the
corners to the top and bottom boundary layers; simultaneously, there is an O(La)
diffusive transport of kinetic energy between the viscous layers and the vortex core,
where the mechanical energy is dissipated.

A second global constraint is that the steady-state convection zone is a constant heat
(or downwind-momentum) flux layer. For the solutions investigated, the conductive
flux across the upper and lower horizontal boundaries is entirely carried by the narrow
plumes, away from the thin top and bottom boundary layers. In this investigation, the
flux is prescribed; thus, the horizontal integral of this flux scales in direct proportion
to the cell width π/k. Since the work done within the plumes can be expressed in
terms of this horizontally integrated flux (see (6.2) and (6.3)), the work also scales in
direct proportion to π/k; so, too, does the energy dissipation, which scales with the
area of the cell (π/k) since most of the dissipation occurs in the core where Ω(y, z)
is uniform. Thus, asymptotically, Ω̄ is independent of the horizontal wavenumber k,
as corroborated by the numerical simulations.

A final noteworthy aspect of the asymptotic vortex structure is that, given stress-free
conditions on the cellular flow, the streamfunction is smooth in the weak-diffusion
limit even though the associated vorticity is not. Consequently, the advection–diffusion
equations for vx(y, z) and Ω(y, z) linearize in the viscous layers surrounding the vortex
core, enabling the solution to the full nonlinear boundary-value problem to be reduced
to quadratures. We emphasize that the analytical solutions obtained here are fully
nonlinear in that the vortices are sufficiently strong to completely restructure the
linear downwind-velocity (or, for thermal convection, temperature) profile realized in
the absence of convection. Thus, our approach complements the more usual weakly
nonlinear convection analyses in which the basic-state profiles are not altered at
leading order by the presence of the convection cells.
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It is interesting to briefly compare our small-La analysis with two other finite-
amplitude convection theories, which are based on long-wavelength and ‘modal’
approximations, respectively. Exploiting the fact that kc = 0 when constant-flux
boundary conditions are imposed, Cox & Leibovich (1993) derived a ‘fully’ nonlinear
reduced model of long-wavelength (i.e. small k) LC that is valid sufficiently close to
the onset of convection. In their theory, the downwind velocity perturbation u(y, z)
to the basic-state shear flow Ub(z) is allowed to be O(1). As indicated in § 1, however,
the basic-state shear flow gradient is not modified at leading-order in k since the
O(1) downwind velocity perturbation is depth-independent. Moreover, the cellular
flow is weak, being characterized by O(k) horizontal velocities and O(k) non-uniform
downwind vorticity. As k → 0, the small-La convective states, which are valid far
from the primary instability threshold, do not approach these solutions. Indeed,
in this limit, the small-La solutions feature O(1) depth-varying downwind velocity
perturbations and O(1) cross-wind horizontal velocities, so the downwind velocity and
O(1) downwind vorticity remain spatially uniform in each vortex core. Furthermore,
an examination of the behaviour of solutions to the Poisson equation (5.4) as k → 0
reveals that the vertical velocity vanishes in the core, but reaches O(1) values near
the up- and downwelling zones; in contrast, the small-k finite-La convective states
exhibit O(k2) vertical velocities throughout the domain.

At finite k, the small-La analytical solution for the streamfunction obtained in § 5
lends some support to the single-mode convection approximation of Gough et al.
(1975), since (5.5) and (5.6) show that ψ(y, z) is dominated by its lowest Fourier
mode. In their approximation scheme, the horizontal (but not vertical) structure of
each dependent variable is expanded in a series of orthogonal functions; Galerkin
projection of the governing equations is then employed, followed by a severe truncation
in which only a single horizontal mode is retained. While the present analysis suggests
that this truncation may be a reasonable approximation for the streamfunction and
its first spatial derivatives (i.e. the cellular velocity components), the (x) vorticity and
temperature fields clearly cannot be accurately approximated by retaining only a
single or even a small number of Fourier modes.

An obvious question not investigated here concerns the stability of the strongly
nonlinear asymptotic solutions. Indeed, for sufficiently small La, the steady cellular
solutions are expected to be unstable to small-scale disturbances. The numerical
simulations suggest that – in two-dimensions – these instabilities do not occur for La �
O(10−4), i.e. values of La that may be of oceanographic relevance. Importantly, both
the full asymptotic and, particularly, the hybrid analytical–computational solutions
show good agreement with the steady-state numerical solutions for 10−4 � La �
10−3. If the evolution is laminar, the time required to attain these steady states is
proportional to the diffusion time scale H 2/νe (cf. Rhines & Young 1983). If La �
O(10−4), the evolution is likely to be turbulent. Our conjecture is that the laminar
solutions investigated here may nevertheless play some role in the turbulent dynamics,
acting as a saddle on a high-dimensional attractor, in which case the time required
to visit the neighbourhood of these solutions could be much less than the laminar
diffusive time scale. If valid, this conjecture is more likely to be relevant for Langmuir
circulation than for thermal convection, since observations, simulations and theory
support the view that quasi-two-dimensional vortices elongated in the wind direction
are preferred. We note that the downwind- and time-averaged downwind velocity
profiles extracted from the large-eddy simulations of turbulent Langmuir circulation
by Tejada-Martinez & Grosch (2007) exhibit a striking qualitative resemblance to the
laminar solutions analysed here. (Specifically, compare their figures 3a and 8a with
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figures 3a and 3b of the present work, and note that Tejada-Martinez & Grosch
employ a no-slip lower boundary condition and an exponentially decaying Stokes
drift.) Perhaps similar considerations would apply for Rayleigh–Bénard convection in
a shear flow, where again, roll vortices aligned with the shear control the dynamics
and transport. Moreover, Newell, Rand & Russell (1988) put forth the intriguing
conjecture that turbulent transport may be dominated by the random occurrence
of coherent events that these authors contend are closely related to solutions of
the governing equations in the weak-dissipation limit. Newell et al. identify thermal
convection at large Rayleigh numbers, in which transport is dominated by narrow
plumes, as one apt candidate for the theory they espouse. Of course, comparisons
with direct numerical simulations of ‘Langmuir turbulence’ and turbulent thermal
convection are required to test this conjecture in the present context.

Given these considerations, one useful extension of the present work would be
to carry out a quasi-inviscid secondary stability analysis to investigate the way in
which the steady two-dimensional asymptotic solutions break down into turbulence.
A related line of investigation concerns the modulational stability of the steady
cellular solutions, i.e. their stability to disturbances having a length scale much
greater than the cell width (Novikov & Papanicolaou 2001). To this end, the
quasi-linearization of the governing equations afforded by analytical knowledge of
the cellular streamfunction should facilitate the required homogenization analysis.
We are pursuing a third extension by adapting the analysis described here to
treat Rayleigh–Bénard convection with the more usual specified temperature rather
than specified heat-flux conditions. The corresponding large-Ra convection solutions
exhibit a classically proposed relationship between the Nusselt number Nu (a non-
dimensional measure of the heat flux through the layer) and Rayleigh number;
namely, Nu ∼ CRa1/3, where the O(1) coefficient C can be shown to depend on the
wavenumber of the convection pattern but not on the Prandtl number, for the given
stress-free boundary conditions. This analysis will be reported elsewhere. The highly
nonlinear convective states obtained in the present study necessarily are constant-flux
solutions, for which a satisfactory definition of an appropriate Nusselt number is
less obvious. Otero et al. (2002) show that the conventional definition of the Nusselt
number requires, for constant heat-flux convection, Nu = 1/|	vx | = 1/|	T |, where
	T refers to the (non-dimensional) horizontal-mean temperature difference between
z = 0 and z = −1. (This definition is also physically appealing since intense convection
largely eradicates the temperature difference across the layer.) With this choice, our
solutions satisfy Nu ∼ C(k)Ra1/3 as Ra → ∞ (or, equivalently, Nu ∼ C(k)La−1/2

as La → 0), again independently of Prandtl number, as for the case of Dirichlet
boundary conditions. Our scaling estimate satisfies the rigorous bound for constant
heat-flux RBC obtained by Otero et al. (2002), which requires Nu � c̃Ra1/2 for an O(1)
constant c̃, and more closely agrees with experimental data for finite-Prandtl-number
convection.

In the Langmuir circulation context, the small-La analysis may be modified to
incorporate more realistic exponentially (rather than linearly) decaying Stokes drift
profiles. This extension is challenging, since the discrete rotational symmetry possessed
by the solutions investigated here is broken. Finally, the results of the present
investigation suggest certain useful guidelines for simulations of unsteady convection
at small La: specifically, the vorticity field exhibits passive boundary layers, which
need not be resolved; and the streamfunction does not exhibit boundary or internal
layers, and hence may be resolved with a modicum of modes. These various extensions
are the subject of future work.
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